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Abstract 
This work built a simulator for high-pressure hydrogen storage containers made of carbon-fiber-reinforced plastics (CFRPs) 

using the filament winding (FW) technique. The simulator accommodates for macro-, meso-, and micro-scale structures. An 

in-depth examination that takes FW-CFRP fibre bundle tape imperfections into consideration is now possible thanks to the 

created simulator. We created a parallel computing system for three-scale homogenisation using the domain decomposition 

approach since numerical simulations taken into account fibre imperfections increase memory utilisation and processing 

time. By running numerical examples on supercomputers, we were able to prove that our three-scale parallel 

homogenisation analysis almost achieves the optimal acceleration ratio in parallel computing. Considering waviness as an 

initial irregularity in the carbon fibre arrangement, we then explored how it affects the macro-scale characteristics of FW-

CFRP in fibre bundle tapes. We found that the waviness of the fibre significantly affects the macroscopic stress and 

stiffness when we analysed fibre abnormalities. In this investigation, compared to findings without irregularities, 

macroscopic stiffness was 40% lower and stress was 57% lower. 
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1. Introduction 

 
Fuel-cell vehicles are expected to gain increasing popularity owing to their minimal environmental footprints and 

expeditious refueling capabilities. The pivotal factor in their widespread adoption is enhancing their long-range cruising 

ability. However, considering the low energy density of hydrogen as a fuel source, it is imperative to integrate high- 

pressure hydrogen storage tanks. Such tanks require superior pressure endurance compared to traditional natural gas 

containers and must be lightweight to boost energy efficiency. A feasible solution to this challenge is the adoption of 

composite high-pressure storage vessels that combine durability with reduced weight.  Composite high-pressure hydrogen 

storage vessels utilize various materials for structural integrity, including a plastic liner layer for hydrogen containment 

and carbon-fiber-reinforced plastic (CFRP) layer for pressure resistance. The primary component is the CFRP layer, which 

is formed using the filament winding (FW) method and plays a crucial role in maintaining overall structural strength. 

 
 

 

  

mailto:mechpoornima@gmail.com
mailto:sharanukoni@gmail.com
mailto:sridharmpheroor@gmail.com


 

Vol.9, Issue No 3, Sep 2019 

   IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501 

  
 
  

79  

The FW technique involves winding fiber bundle tapes around a curved surface with varying orientations, as shown 

in Fig. 1. The rigidity of vessels fluctuates significantly based on the winding pattern and number of fibers involved  

(Lisboa et al., 2020). When designing high-pressure vessels, assessing the material strength of CFRP layers shaped 

using the FW method is vital. Traditional methods for evaluating material strength typically involve extensive tensile and 

fatigue testing. However, strength evaluation tests that replicate actual machinery involve substantial production costs  

and extensive testing durations. Based on recent advancements, numerical simulation methods such as the finite element  

method (FEM) and homogenization method have led to the adoption of simulation-based approaches to evaluating the 

strength of practical structures. 

Given the microscale heterogeneity within FW-CFRPs, developing a strength evaluation method that accounts for 

internal structures, including not only the winding structures of fiber bundle tapes but also the fibers and resins in tapes, 

is crucial for performing more detailed and advanced analysis. However, the analysis of the microstructure of an entire 

storage tank is computationally impractical. Homogenization methods are often employed for evaluating heterogeneous 

materials and material constants are determined by treating the region of interest as a homogenous domain (Wu and Ohno,  

1999; Ohno et al., 2001; Terada and Kikuchi, 2001). An FW-CFRP is a composite material consisting of fibers that can 

be considered as a linear elastic and resin with material nonlinearity. Therefore, ordinary elastic analysis is insufficient 

for reproducing the associated mechanical behaviors and an analysis that considers the material nonlinearity of resin is 

required. 

To evaluate the structural integrity of composite high-pressure vessels, assessing the impact of the initial irregularities 

occurring during formation on strength is also crucial. Specifically, fiber waviness is a key initial irregularity that has not 

been considered in the literature. 

Some numerical simulations of FW composites based on FEM analyses have been conducted previously. Harada 

et al. (2018) performed burst tests on a Type-III FW tank, which had the same construction as an actual hydrogen tank, 

and in combination with FEM analyses, their findings revealed that the fiber volume fraction in the internal structure  

can affect strength. Lisboa et al. (2020) and Stabla et al. (2021, 2022) evaluated the effect of the winding pattern and 

winding angle on the strength and stiffness of FW composite tubes by performing compression tests and FEM analysis.  

Ye et al. (2020) investigated the periodic structures present in the winding patterns of FW-CFRPs. Zhang et al. (2008) 

proposed a periodic structure to match winding patterns and applied it to a mesoscopic FEM model with crimped fiber  

bundles, and Pourahmadi and Taheri-Behrooz (2020) proposed a mesoscopic FEM model and conducted macroscopic 

FEM simulations. 

Homogenization analysis methods have been developed for textile composites to handle the material nonlinearity of  

resins, and elasto-viscoplastic and thermo-elasto-viscoplastic analyses of textile composites have been conducted (Mat- 

suda et al., 2007; Matsuda et al., 2011; Kubo et al., 2019; Kubo et al., 2018). However, these studies did not consider 

initial irregularities such as fiber waviness. In contrast, we address the unit cell structure characteristics of the FW metho d 

through three-scale homogenization analysis by modeling a high-pressure hydrogen container at the macro-, meso-, and 

micro-scales (Fig. 2), where the fiber waviness in fiber bundle tapes is considered explicitly. However, numerical simula- 

tions that account for fiber waviness require high-resolution meshes to represent the fiber waviness wavelength, increasing  

computational demands, even with homogenization methods. Therefore, implementing parallel computation algorithms 

in multiscale analysis is imperative for reducing the computation time and enhancing the practicality of the proposed  

method. 

Specifically, a three-scale inelastic homogenization analysis simulator for a high-pressure hydrogen storage vessel 

composed of a composite material using the FW method was developed. The developed simulator homogenizes the 

winding pattern of the FW method by considering fiber waviness in the mesoscale structure as an initial fiber waviness  

and evaluating its impact on macroscale material constants. To handle the increased computational scale of simulations 

considering fiber waviness, a parallel computation algorithm based on domain decomposition is proposed to improve the  

feasibility of the proposed numerical analysis method. 

 

2. Overview of homogenization analysis 

2.1. Governing equation of macroscale domain 

Although this study aimed to implement a three-scale homogenization simulator, we first focus on a two-scale ho- 

mogenization method consisting of the macro- and microscales, and provide a brief overview of homogenization analysis.  

Within the scope of this study, we consider an infinitesimal deformation and define a Cartesian coordinate system x in a 

macroscopic problem. When no volumetric forces are applied, the equilibrium of the macroscopic stress in the form of 
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Fig. 1    Schematic representation of FW pattern. Fiber bundles are wrapped around the liner, and a stacking pattern 
with a periodic structure is obtained. 

 

 

   

Fig. 2    Schematic representation of three scale homogenization method. Mesoscale unit cell (I) resolves fiber 
bundles, and microscale semi unit cell (II) resolves carbon fibers and resins. 

velocity is represented as 

Σ̇i j,x j   = 0, (1) 

where Σ̇  is the macroscopic stress tensor, ( ˙ ) is the time derivative, and the subscript (  ),x j   is the partial derivative with 

respect to the Cartesian coordinate x j. 

Given the assumption that the domain Ωx is composed of a periodic structure of elasto-viscoplastic materials, the 

homogenized elasto-viscoplastic properties are formulated as 

Σ̇i j  = CH (Ėkl  − βH), (2) 

where  Ėi j  is  the  macroscopic  strain  tensor,  CH is the macroscopic elastic stiffness tensor, and βH is the macroscopic 

viscoplastic function tensor. 

To apply the weighted residual method to the equilibrium of macroscopic stress, Eq. (1) is multiplied by the virtual 

displacement velocity δU̇i  and the weak form is derived as 

∫
Ω   
Σ̇i j  δU̇i,x j dΩx = 

∫

Γ   
δU̇i  ti dΓx, (3) 

where t is the traction vector. 

The equation (3) can be solved using the FEM. However, at this stage, the macroscopic elastic stiffness tensor 
H 
i jkl and the macroscopic viscoplastic function βH are unknown. These values are determined by solving a microscopic 

problem using unit cells and averaging operations. 

 
2.2. Governing equation of the microscale domain 

In the microscale problem, where y denotes the Cartesian coordinate system, we focus on deriving the macroscopic 

elastic stiffness tensor CH and macroscopic viscoplasticity function βH to address the macroscale problem. Considering 

a unit cell Y, when there are no volumetric forces, the equilibrium of microscopic stress in its velocity form is described 

as 

σ̇ i j,y j   = 0, (4) 

where σ̇ i j is the microscopic stress rate. 

The microscopic displacement velocity u̇i(y) in the unit cell Y is expressed as 

ui(y) = Ėi j y j + u̇#(y). (5) 

Here, the first term on the right side represents the macroscopic uniform deformation and the second term represents the 

disturbance displacement. u̇#(y) is Y−periodic term and is distributed within unit cell Y .

C 
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The microscopic strain rate ε̇i j is expressed as 

ε̇i j(y) = Ėi j  + ε̇# (y), (6) 

where the disturbance strain rate ε̇#  is expressed as 

ε̇#  =  
1 

{u̇# 
 

+ u̇# }. (7) 
i j 2  i,y j j,yi 

Assuming that the periodic domain Y consists of elasto-viscoplastic materials, the elasto-plastic properties are ex- 

pressed as 

σ̇ i j = Ci jkl (ε̇kl − βkl), (8) 

where Ci jkl is the microscopic elastic stiffness tensor, and βkl is the microscopic viscoplastic function. The viscoplasticity 

function βkl follows Norton’s rule as 

3   p 
{ 

   σ̄    
}n  

si j 

where n is the material constant of the resin, g is the hardening function, ε̄p is the equivalent viscoplastic strain, ε̇p is the 

reference strain rate, si j is the deviatoric stress and σ̄  is the equivalent stress. 

By multiplying the equilibrium microscopic stress in Eq. (4) by the variation and integrating over the domain Y, 

the following weak form is obtained: 

∫
Y  
σ̇ i j δvi,y j dΩy = 

∫

Γ   
vi ti dΓy, (10) 

where the right side is zero if Y-periodicity is satisfied because its normals are oriented in opposite directions on opposite 

boundaries. 

By substituting Eq. (5), to (8) into Eq. (10) and reorganizing, we obtain the following equation: 

∫   Ci jpq u̇
#

 vi,y dY = −Ėkl 

∫

 Ci jkl vi,y dY + 
∫

 Ci jkl βkl vi,y dY. (11) 

Assuming  that  Eq.   (11)  is  linearized,  the  disturbance  displacement  velocity  field  u̇#,  which  is  the  solution  to  the 

boundary value problem, can be expressed in the following functional form using the Y-periodic characteristic functions 

χkl and ϕi: 

u̇#(y) = χkl(y)Ėkl  + ϕi(y). (12) 
i i 

Consequently, the characteristic functions χkl and ϕi are obtained by solving the following boundary value problems: 

∫  Ci jpq χ
kl

 vi,y j dY = − 
∫

Y
 Ci jkl vi,yj dY, (13) 

∫

Y 
Ci jpq ϕp,yq vi,y j dY = 

∫

Y 
Ci jkl βkl vi,y j dY. (14) 

Substituting Eqs. (6) and (12) into Eq. (8) yields 

σ̇ i j  = Ci jpq 

(
δpk δql  + χkl

 

) 
Ėkl  − Ci jkl 

(
βkl − ϕk,yl 

) 
. (15) 

 

2.3. Homogenization of microscale material properties 

By leveraging the volume-averaging operation of the homogenization method, the macroscopic material constant can 

be derived using the following equation: 

Σ̇i j  = 
⟨
Ci jpq 

(
δpk δql  + χkl

 

)⟩ 
Ėkl  − 

⟨
Ci jkl 

(
βkl + ϕk,yl 

)⟩ 
, (16) 

where δi j is the Kronecker delta. The average volume with respect to the unit cell is defined as 

⟨#⟩ = 
 1  ∫

 
 

#dY, (17) 
|Y| Y 

where |Y| is the volume of the unit cell. 

Similarly, the macroscopic strain rate and stress rate are expressed as follows: 

Ėi j  = ⟨ε̇i j⟩, (18) 

Σ̇i j  = ⟨σ̇ i j⟩. (19) 

Y Y 
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3. Proposed method: parallel three-scale homogenization 

3.1. Three-scale homogenization algorithm 

The structure of the target FW-CFRP was modeled using the three-scale model shown in Fig. 2 and the unit cells 

were constructed from periodic structures at the mesoscopic and microscopic scales. A unit cell (I) consisting of two 

types of fiber bundles, i.e straight and crimped fiber bundles, was defined on the mesoscopic scale and a semi unit cell 

(II) consisting of a fiber and resin was defined on the microscopic scale. For each unit cell, we again define the Cartesian 

coordinate systems x and y. Physical quantities at the macro-, meso-, and microscales are assigned superscripts of 0, 1, 

and 2, respectively. 

The mesoscopic-microscopic homogenization scheme is applied to the stress and strain in the micro unit cell (II),  

which are represented as 2σi j and 2εi j, respectively. Then, the evolution equation of 2σi j is derived in the same form as 

Eq. (15) as 

2σ̇ i j  = 2Ci jpq 

(
δpk δql  + 2χkl

 

) 
1ε̇kl  − 2Ci jkl 

(
2βkl  − 2ϕk,y 

) 
, (20) 

where 2χkl and 2ϕi are determined by solving the following boundary value problems for the unit cell (II): 
∫     

2Ci jpq 
2χkl vi,y dYII = − 

∫

 
2Ci jkl vi,y dYII, (21) 

∫

YII 

2Ci jpq 
2ϕp,y vi,y j dYII = 

∫

 

 

YII 

2Ci jkl 
2βkl vi,y dYII. (22) 

By taking the volume average ⟨⟩II with respect to the microscopic unit cell (II) in Eq. (20), the following constitutive 

equation for fiber bundle tapes can be derived at the mesoscale: 

1σ̇ i j  = 
⟨

2Ci jpq 

(
δpk δql  + 2χkl

 

)⟩   
1ε̇kl  − 

⟨
2Ci jkl 

(
2βkl  − 2ϕk,y 

)⟩
 . (23) 

Similarly, by applying homogenization theory to the macroscopic-mesoscopic homogenization scheme, we obtain 

the equation of mesoscopic stress and the macroscopic constitutive equation of the FW-CFRP as shown in Eqs. (24) and 

(25). 

1σ̇ i j  = 1Ci jpq 

(
δpk δql  + 1χkl

 

) 
0ε̇kl  − 1Ci jkl 

(
1βkl  − 1ϕk,x 

) 
(24) 

0σ̇ i j  = 
⟨

1Ci jpq 

(
δpk δql  + 1χkl

 

)⟩  
0ε̇kl  − 

⟨
1Ci jkl 

(
1βkl  − 1ϕk,x 

)⟩
 

 
(25) 

Here, ⟨⟩I is the volume average with respect to the mesoscopic unit cell (I), and 1χkl and 1ϕi are determined by solving 

the following boundary value problems for the unit cell (I): 
∫    

1Ci jpq 
1χkl vi,y dYI = − 

∫

 
1Ci jkl vi,y dYI, (26) 

∫

YI

 
1Ci jpq 

1ϕp,y vi,y j dYI = 
∫

YI
 

1Ci jkl 
1βkl vi,y dYI. (27) 

It should be noted that 1Ci jkl and 1Ci jkl
1βkl in the above equations have the following relationships with the averaged 

quantities in Eq. (23): 

1Ci jkl = 
⟨

2Ci jpq 

(
δpk δql + 2χkl

 
)⟩

II

 
, (28) 

1Ci jkl
1βkl = 

⟨
2Ci jkl 

(
2βkl − 2ϕk,y 

)⟩
 , (29) 

which enables to couple mesoscopic-microscopic and macroscopic-mesoscopic homogenization schemes. It should also 

be noted that the coordinate rotation is appropriately given to 
⟨

2Ci jpq 
(
δpkδql + 2χkl 

 

 

)⟩  
and 

⟨
2Ci jkl 

(
2βkl − 2ϕk,y 

)⟩
 in Eqs. 

 

3.2. Parallel computation based on domain decomposition 

In scenarios where the analysis target requires a fine mesh, the resultant increase in the computation scale leads to 

an escalation in both computation time and memory usage. With sequential calculations on a shared-memory computer, 

the computation time becomes excessive or the computational process hits the memory capacity limit, rendering further 

calculations unfeasible. 

The advantage of the proposed approach is that it reduces computation time by utilizing multiple computation cores.  

Additionally, it helps alleviate memory capacity constraints, particularly when implemented on distributed-memory par- 

allel computers such as supercomputers. However, a notable consideration with distributed-memory parallel computers 

(28) and (29) according to the directions of the fibers in the fiber bundle tapes. 
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Fig. 3 Analysis mesh of mesoscopic model. The mesoscale unit cell (a) consists of straight tape and tapes with 

crimp. Tapes which fiber orientation coincides with the x1 direction are shown in (b), and tapes in which 
fiber orientation coincides with the x3 direction are shown in (c). 

 

 
Fig. 4    Analysis mesh of microscopic model. The microscale semi unit cell resolves resin and carbon fibers  

separately. 

 
is the absence of shared memory coupled with limited memory capacity per computer node. Consequently, large datasets  

must be partitioned preemptively. 

One data partitioning method is based on domain decomposition, where a finite element mesh is spatially partitioned. 

In the FEM, interaction (exchange of information) occurs among the nodes that compose the mesh.  Therefore, it is 

reasonable to consider spatial decomposition during data partitioning. In this study, domain decomposition was performed  

using mesoscopic meshes. In mesoscopic meshes, multiple cores communicate with each other via domain decomposition.  

Additionally, the mesh representing the microscopic structure is tied to the integration points of the mesoscopic mesh. As a  

result, there is no need for data communication between domains, which can be computed independently; this is expected 

to result in high computational efficiency. 

For mesh partitioning, the mesh was considered as a graph and the minimum-cut problem was solved. The graph 

minimum-cut problem minimizes the number of edges (connections between nodes) across partitioned subdomains under  

the constraint that the number of nodes belonging to each partitioned subdomain is equal. By keeping the number of nodes 

equal in each subdomain, the load balance is maintained during parallel computation. Minimizing the number of edges  

that straddle the divided subdomains minimizes the amount of data communication required between subdomains.  Such 

subdomain partitioning is expected to yield high parallel computation efficiency. In this implementation, fortran90 and 

Intel compiler (2020.4.304) were used as programming language, and the METIS software was used for graph partitioning  

(Karypis and Kumar, 1997). For parallel implementation, the domain-decomposition-based parallel linear solver library 

Monolis was adopted (Monolis, 2023). 

 

4. Performance evaluation of parallel three-scale homogenization analysis 

 
The parallel computation performance of the developed three-scale homogenization simulator was evaluated in terms 

of strong scaling performance (Breshears, 2009). Strong scaling evaluates the acceleration ratio of the computation time 

when the number of CPU cores used for parallel computation is increased while maintaining the number of mesh nodes. 

The acceleration ratio S n is defined as follows: 

S n = t1/tn, (30) 

where S n is the acceleration ratio when the number of parallelizations (i.e., number of subdomains) is n, tn is the cal- 

culation time when the number of parallelizations is n, and t1 is the calculation time (i.e., sequential computation time) 

when the number of parallelizations is one. If strong scaling performance is achieved, then the computation time can be 

efficiently reduced, which is expected to improve the utility of the simulator. 

Coarse and fine computational models were created as mesoscopic structures. The meshes used were hexahedral 

first-order elements. The mesoscopic mesh used in the coarse model contained 13,965 nodes and 11,136 elements (Fig. 
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 −10 

 

 
 

 

Fig. 5 Acceleration ratio of three-scale analysis (coarse model). The good acceleration ratio is observed for 
microscopic analysis. In contrast, the improvement in acceleration performance slowed for mesoscopic 
analysis at 32 parallel processes. Microscopic analysis does not require data communication between 
parallel processes and each process can be computed independently.  However, mesoscopic analysis 
requires data communication between parallel processes. 

 

 

 

Fig. 6 Acceleration ratio of three-scale analysis (fine model). The good acceleration ratios are observed for both 
microscopic and mesoscopic analysis. As the number of mesh nodes increases, the amount of computation 
that each process can handle increases, which decreases the ratio of computation time required for data 
communication. 

 
3). The fine model contained 100,201 nodes and 89,088 elements. The fine model was obtained by refining the hexahedral  

elements of the coarse model. The same mesh was used for the microscopic structures in both models, as shown in Fig. 4. 

This mesh assumes a generalized plane strain state and uses quadrilateral first-order elements. The microscopic meshes 

had 81 nodes, 97 elements, and 73% fiber volume content. 

The material constants for carbon fiber, which acts as a transversely isotropic elastic material, are listed in Table 1 

(TORAY CFE, 2023). The constants for the epoxy resin, which acts as an isotropic elasto-viscoplastic material, are listed 

in Table 2 (Takahashi et al., 2022). 

Boundary conditions simulating uniaxial tension with deformation control were applied to the models.  Uniaxial 

tension  with  a  macroscopic  constant  strain  rate  of  0ε̇33  =  1.1 × 10−4  s−1  was  defined  and  calculated  for  one  step  with 

∆t = 1.0 s. The equations to be solved for the mesoscopic structure were obtained using the conjugate gradient method 

and diagonal scaling preconditioning. The equations for the microscopic structure were solved efficiently by assuming 

the same microstructure mesh, using the sparse matrix direct method library MUMPS (Amestoy et al., 2000), and storing 

the results of LU decomposition. An Oakbridge CX supercomputer at the University of Tokyo was used for computation  

(Oakbridge CX, 2023). The computation times were measured in the range of 1 to 32 parallel processes for the coarse  

model and in the range of 1 to 256 parallel processes for the fine model. For the coarse model, calculations were performed 

 

Table 1  Material constants of carbon fibers 
 

 

ELL [GPa] 264 
ETT [GPa]     19.0 
νLT 0.28 
νTT 0.49 

  GLT [GPa]     56.0  

Table 2  Material constants of epoxy resin 
 

Em [GPa] 2.7 
νm 0.35 

p 1 5 
0 

n 25 
g(ε̄p) 122.8(ε̄p)0.228 + 0.5 
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Fig. 7 Schematic representation of fiber waviness. The reduction of macroscopic stiffness due to waviness is 
simulated by controlling the direction of fiber orientation in the microscopic model, which is assigned to 
the mesoscopic model. 

 

 

Fig. 8    Analysis mesh of straight tape model used for comparison with experimental results. This model has no 
fiber bundle crimps. 

 
for one computation node. For the fine model, six CPU cores were used per computation node and the number of 

computation nodes used was determined accordingly. 

Figure 5 presents the strong scaling performance of the coarse model. The breakdown of the total computation 

time for the sequential computation of the coarse model was 34.3 s for microscopic analysis and 37.0 s for mesoscopic 

analysis. The horizontal axis represents the number of cores used for parallel computation, which is consistent with 

the number of domains. The red line represents the acceleration ratio for microscopic analysis, blue line represents the  

acceleration ratio for mesoscopic analysis, and black line represents the ideal acceleration performance. Figure 5 reveals 

that the ideal acceleration ratios were observed for 1 to 16 parallel processes. In contrast, 32 parallel processes yielded a 

good acceleration ratio for microscopic analysis, but the improvement in acceleration performance slowed for mesoscopic  

analysis. While microscopic analysis does not require data communication between parallel processes and each process 

can be computed independently, mesoscopic analysis requires data communication between parallel processes. As the  

number of parallel processes increases, the amount of computation that each process can handle decreases, which increases  

the ratio of computation time required for data communication. 

Figure 6 presents the strong scaling performance of the fine model. The total computation time for sequential 

computation was 288.0 s for microscopic analysis and 706.0 s for mesoscopic analysis. The presented results highlight 

the effectiveness of the parallel computation of the developed three-scale homogenization simulator. 

 

5. Multi-scale modeling of FW-CFRP considering fiber waviness 

 
Our parallel three-scale homogenization simulator was used to evaluate the effect of manufacturing errors at the 

mesoscopic scale on the macroscopic stress–strain relationship. The model presented in Fig. 3 was used for the meso- 

scopic structure and the two-dimensional mesh presented in Fig. 4 was used for the microscopic structure. Uniaxial 

tension was applied at a macroscopic constant strain rate of 0ε̇33  =  1.1 × 10−4s−1  until ε33  =  1.5%.  The time increment 

was ∆t = 1.0 s. The material constants described in Section 4 were adopted. 

To evaluate the effects of fiber irregularities on the macroscopic stiffness and stress level, we considered the fiber 

waviness in a fiber bundle tape (Ueda et al., 2024). Figure 7 presents a schematic representation of fiber waviness in the 

x3 direction. Assuming that the direction of the fiber orientation can be approximated by a trigonometric function, the 
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L 

Fig. 9    Macroscopic stress-strain relationship of FW-CFRP with fiber waviness in Tape (A) (effect of amplitude). 
As the amplitude a increases, both stiffness and stress tend to decrease. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10    Macroscopic stress-strain relationship of FW-CFRP with fiber waviness in Tape (A) (effect of the number 
of waves). As the wavenumber b increases, both the stiffness and stress tend to decrease. 

 
waviness w is defined as 

w = al sin 

( 
2bπxi 

) 

, (31) 

where l is the representative width of one element, L is the width of the mesoscopic unit cell, xi is coordinate of the xi 

direction, a is the magnification factor with respect to the amplitude, and b is the number of waves. For example, when 

a = 1, an initial fiber waviness occurs such that there is a one-element shift in the orthogonal in-plane direction from the 

original fiber orientation direction. The mesoscopic material properties (shown in Eq. (23)) in elements with waviness are  

transformed into appropriate coordinates according to the wave angle. 

As a basic investigation, we evaluated the effect of fiber waviness on mechanical response under simple tensile con- 

ditions for straight tapes (A) in the x3 direction and crimped tapes (B) in the x3 direction among the four fiber bundle 

tapes that constitute a mesoscopic unit cell. Tensile tests were conducted on the FW-CFRP specimens to validate our 

numerical calculations (Takahashi et al., 2022). Specimens with a [0/90]2s laminate configuration were formed by wrap- 

ping fiber bundle tape around a jig using the FW method. When cut, the specimen dimensions were in accordance with  

the JISK7165 standard. The tensile test results are presented as dots in Figs. 9 to 14. It should be noted that the fiber  

bundle tapes in the specimens had no crimp, dissimilar to the mesoscopic model presented in Fig.  3. All of the tapes 

were straight because the 0◦  and 90◦  layers were wound alternately. Therefore, we created a mesoscopic model with 

straight tapes (called the ‘straight tape model’ shown in Fig. 8) and subjected it to three-scale analysis, resulting in the 

stress–strain relationship indicated by the dashed lines in Figs. 9 to 14. One can see that the dashed lines are in good 

agreement with the experimental data, validating the proposed analysis method and the material constants described in  

Section 4. 

 
5.1. Effect of fiber waviness in straight tapes (A) on macroscale property 

First, we evaluate the effect of fiber irregularities in the x3-directed straight tape (A) on the corresponding macro- 

scopic stress–strain relationship. Figure 9 presents the stress–strain relationships obtained on the macroscale when the 

wavenumber b was fixed at one and the amplitude factor a was varied with values of 0.25, 0.5, 0.75, and 1, as well as 
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Fig. 11   Macroscopic stress-strain relationship of FW-CFRP with fiber waviness in Tape (B) (effect of amplitude). 
The change in the stress–strain diagrams is very small compared to the case of tape (A) as shown in Fig. 
9. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12 Macroscopic stress-strain relationship of FW-CFRP with fiber waviness in Tape (B) (effect of the number 
of waves). The change in the stress–strain diagrams is quite small compared to the case of Tape (A) as 
shown in Fig. 10. 

 
the results for the case without fiber waviness (i.e., (a, b) = (0, 0)). One can see that the stiffness and stress levels for 

(a, b) = (0, 0) are slightly lower than those of the experimental data and straight tape model due to the effects of crimps 

in the fiber bundle tapes. When comparing the stress–strain relationships for the cases with fiber waviness to one another, 

as the amplitude a increases, the difference in the angle between the direction of carbon fiber orientation and the tensile 

direction increases. As a result, both stiffness and stress tend to decrease. In the case of (a, b) = (1,1), the stiffness and 

stress decreased by 4.8% and 12.3%, respectively, compared to the results without irregularities at 1% macroscopic strain. 

Figure 10 presents the macroscopic stress-strain relationships when the amplitude a was fixed at one and the wavenum- 

ber b varied with values of 0.5, 1, 1.5, and 2. One can see that both the stiffness and stress tend to decrease as the 

wavenumber b increases. This is because the angle between the direction of carbon fiber orientation and the tensile direc- 

tion is larger when the wave number b increases within the range of the parameters examined in this study. In the case of 

(a, b) = (1,2), the stiffness and stress were reduced by 16.5% and 37.6%, respectively, at 1% macroscopic strain compared 

to the results with no irregularities. 

 
5.2. Effect of fiber waviness in crimped tapes (B) on macroscale property 

In this section, we evaluate the effects of fiber irregularities in the x3-directed crimped tape (B) on the corresponding 

macroscopic stress–strain relationship. Figure 11 presents the macroscopic stress–strain relationships obtained when the 

wavenumber b was fixed at one and the amplitude factor a was varied with values of 0.25, 0.5, 0.75, and 1. Figure 

12 presents the stress–strain relationships obtained at the macroscale when the amplitude a was fixed at one and the 

wavenumber b was varied with values of 0.5, 1, 1.5, and 2. In these figures, one can see that the change in the stress –strain 

diagrams is very small compared to the case where tape (A) was given a fiber waviness in the previous subsection. This  

is because the original model has crimps that avoid the straight tape (A). Therefore, tape (B) is not subjected to stress and  

even if the fiber waviness reduces the stiffness of the tape (B) section, the effect on the macroscopic level is small. 
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Fig. 13 Macroscopic stress-strain relationship of FW-CFRP with fiber waviness in Tape (A) and Tape (B) (effect 
of amplitude). The stiffness and stress are lower compared to the case when fiver waviness was considered 
only for Tape (A) (Fig. 9) or Tape (B) (Fig. 11). 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14 Macroscopic stress-strain relationship of FW-CFRP with fiber waviness in Tape (A) and Tape (B) (effect 
of the number of waves). The stiffness and stress decreased the most under all conditions. 

 
5.3. Effect of fiber waviness in straight tapes (A) and crimped tapes (B) on macroscale property 

In this section, we evaluate the effects of fiber irregularities in both the straight tape (A) and crimped tape (B) on 

the corresponding macroscopic stress–strain relationships. Figure 13 presents the macroscopic stress–strain relationships 

obtained when the wavenumber b was fixed at one and the amplitude factor a was varied with values of 0.25, 0.5, 0.75, 

and 1. One can see that the stiffness and stress are much lower compared to the case when irregularities were considered 

only for tape (A). These reductions are not a direct result of the addition of irregularities to both tapes (A) and (B), but  

rather a result of the fact that the load is applied from tape (A) to tape (B) because when both tapes have irregularities, it 

results in a superimposed phenomenon of stiffness and stress reduction. In the case of (a, b) = (1,1), the stiffness and stress 

decreased by 11.3% and 28.6%, respectively, at 1% macroscopic strain compared to the results without irregularities. 

Figure 14 presents the stress–strain relationships obtained at the macroscale when the amplitude a was fixed at one 

and the wavenumber b is varied with values of 0.5, 1, 1.5, and 2. One can see that the stiffness and stress decreased the 

most under these conditions. In the case of (a, b) = (1,2), the stiffness and stress decreased by 40.0 and 57.0%, respectively, 

at 1% macrostrain compared to the results without irregularities. 

 
5.4. Discussion 

Our investigation focused on the impact of irregularities in the straight tape (A) and crimped tape (B) on the stiff- 

ness and stress within a mesoscopic structure, specifically in the context of the homogenization of the winding pattern  

characteristics of the FW method. 

The numerical results revealed that when employing a regular straight tape (A), the influence of the fiber waviness 

of the crimped tape (B) on the macroscopic stiffness and stress was relatively minor. In contrast, the presence of fiber  

waviness in both the straight tape (A) and crimped tape (B) led to a reduction in both stiffness and stress. Mitigating 

fiber waviness in both the straight tape (A) and crimped tape (B) during the shaping process of vessels requires advanced  

forming control technology. However, if only the fiber waviness within the straight tape (A) can be effectively reduced, 

then it may be possible to avert the compounded reduction in stiffness and stress induced by fiber waviness in both tapes. 
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6. Conclusions 

 
In this work, a simulator for high-pressure hydrogen storage containers made using the FW approach was constructed. The 

simulator takes macro-, meso-, and microscale structures into account. Using this simulator, in-depth analyses that take 

fibre anomalies into account are made possible. In addition, we looked at how fibre waviness affected attributes at the 

macro scale by starting with a mesoscale structure with a homogenised winding pattern, where waviness was an initial 

irregularity in the carbon fibre arrangement. The results showed as follows.  

• Through the use of large-scale models and numerical examples, it was confirmed that parallel three-scale homogenisation 

analysis achieves parallel computing performance that is near to the optimum acceleration ratio. 

• The impact of fibre waviness on macroscopic stress and stiffness was found to be significant, according to analysis of 

fibre irregularities. Compared to findings without irregularities at 1% macrostrain, the stiffness was lowered by 40% and 

stress by 57% within the scope of this investigation.  

 

• We looked at how macroscopic stiffness and stress were affected by straight tape (A) and crimped tape (B) imperfections. 

According to the findings, it is possible to avoid the combined effects of reduced stress and increased stiffness due to 

crimped tape (B) and straight tape (A) by smoothing out the fibres in the former.  
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